
Monatshefte ffir Chemie 117, 985--1001 (1986) 
Monatshefte fiir Chemie 
Chemical Monthly 

© by Springer-Verlag 1986 

The Icosahedral Potential and its Applications to the Study of 
the Anharmonic Effects in the Overtone Levels of the 

Degenerate Vibrations of Molecules with I h Symmetry 

Manuel  Fernfindez-G6mez a, Juan J. L6pez-Gonzfi lez  a' *, 
and Juan F. Arenas b 

a University of Granada, University College, 
Department of Physical Chemistry, E-23071 Ja6n, Spain 

b University of M/tlaga, Faculty of Science, 
Department of Physical Chemistry, E-29071 M/tlaga, Spain 

Received 3 June 1985. Revised 2 December 1985. Accepted 8 January 1986) 

The splitting of the overtone levels of the Tlu, Gu, and Ha vibrations in 
molecules with I h symmetry has been calculated by using the perturbation theory. 
To do this it was necessary to establish beforehand the icosahedral potential, 
employing the usual procedure in crystal field theory. The total splitting, predicted 
by the group theory, is obtained when the anharmonicity up to the sixth power of 
the coordinates is taken into account. Expressions for the intensities of the 
infrared-active transitions of Tlu vibrations are also proposed. 
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Das ikosaedrische Potential und seine Anwendung fiir die Untersuchung der 
Anharmonizitiit in den Obert6nen der entarteten Schwingungen yon Molekiilen mit 

Symmetrie I h 

Die Aufspaltung der Obert6ne der Schwingungen T~u , G u und Ha in 
Molekiilen mit Symmetrie I h ist unter Verwendung der St6rungstheorie berec[met 
worden. Dafiir war es notwendig, das ikosaedrische Potential herzuleiten. Hierbei 
wurde das iibliche Verfahren der Kristallfeld-Theorie angewandt. Die durch die 
Gruppentheorie vorhergesagte komplette Aufspaltung erhfilt man, wenn die 
Anharmonizit/it bis zur sechsten Potenz in den Koordinaten berticksichtigt wird. 
Es werden Ausdriicke ffir die Intensit~iten der infrarot-aktiven f0berg~inge der 
Schwingungen Tlu vorgeschlagen. 

Introduction 

The harmonic approach has always been extensively used in the study 
of  molecular vibration spectroscopy. Nevertheless, this approach involves 
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intrinsic limitations, even qualitative ones, which are evident in the case of 
degenerate molecular vibrations. It is impossible, for example, to describe 
the multipletical structure of the overtone levels of the degenerate 
molecular vibrations suggested by the group theory [1]. 

The predictions of the group theory for such degenerate vibrations 
coincide with the results of the perturbation theory, where the relevant 
corrections are made to the different vibrational levels to allow for the 
anisotropy of the anharmonicity belonging to each particular symmetry 
[2-51. 

In the case of icosahedral molecules the analysis by perturbation 
theory has not yet been carried out. Furthermore, these molecules are of 
particular interest because they not only have threefold degenerate 
vibrations, like cubic molecules [1, 4], but also fourfold and fivefold 
vibrations [1, 6-8]. The normal vibrations for the chemical species 
B12H122- with the icosahedral symmetry are distributed in the following 
manner, according to the symmetry: 2Ag + Tlg + 3Tlu + 2Tzu + Gg + 
4 Hg + 2 Hu, among which only TIn is active in infrared and Ag and Hg are 
active in Raman.  

In this paper we consider the anharmonic effects in the overtone levels 
of the Tlu and Hg vibrations of icosahedral molecules that are active 
spectroscopically, and also the G u vibrations, in order to include all 
possible cases of degeneracy. 

We started from the potential of icosahedral symmetry in order to 
calculate the necessary corrections to be applied to the vibrational levels. 
This potential does not appear in the literature and consequently we had 
to calculate it ourselves. The expressions thus obtained may also be used to 
calculate the splitting of the crystal field in coordination compounds with 
icosahedral symmetry. 

Theory 
The Icosahedral Potential  

Following the usual procedure in crystal field theory to obtain the 
icosahedral potential, we distributed twelve unit charges at the vertices of 
a regular icosahedron, as shown in Fig. 1. The centre of the icosahedron 
corresponds to the origin of a system of coordinate axes that, as well as 
being orthogonal, are equivalent and thus coincide with three twofold 
rotation axes [9]. This system of axes can be seen in the upper and frontal 
projection of the icosahedron in Figs. 2 (a) and 2 (b), respectively. With 
such a system of axes and bearing in mind the geometrical relationships 
within an icosahedron [10], the cartesian coordinates of the twelve 
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Fig. 1. Spatial arrangement of  twelve unit charges at the vertices of a regular 
icosahedron 
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Fig. 2. a upper and b frontal projections of a regular icosahedron 

n u m b e r e d  charges  will be, a cco rd ing  to Muetterties a n d  Wright [111, as 
fol lows:  

A 1 (1, 0, q)); A 2 ( - 1, 0, q)); A 3 (0, (p, 1); A 4 (qo, 1, 0); A 5 (% - 1, 0); A 6 (0, 
- % 1);AT ( -  % 1 , 0 ) ; A 8 ( 0 , %  - 1 ) ; A 9 ( 1 , 0 ,  - g 0 ; A l o ( 0 ,  - % - 1);A11 
( -  ~p, - 1, 0); A12 ( -  1, 0, - q)), 
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where "q0" is the golden number, 1 + (5)v2/2, and where the coordinates 
have been normalized such that the half-length of the edge of the 
icosahedron is equal to unity. 

We then positioned a charge in the interior of the icosahedron at the 
point P (x, y, z) so that the potential at this point has the general from: 

i=12 1 
V oc Z - (1) 

i= l  ri 

where r i is the distance from the point P (x, y, z) to each of the twelve 
vertices of the icosahedron. The expressions r i for each vertex as functions 
of the cartesian coordinates are the following: 

r 1 = 

r 3 = 

r s = 

r 7 = 

{(X -- 1) 2 -1- y2 + (Z - -  ( p ) 2 } 9 1 ;  

{X 2 jr_ (y _ ~)2 -I- (Z -- 1)2}½; 

{(X -- q))2 _jr_ (y + 1)2 + Z2}½; 

{(x + q))2 + (y _ 1)2 + z2}~; 

r 9 = {(x - 1) 2 + y2 + (z + q))2}'/i; 

rll = {(x + ~)2 + (y + 1)2 + z2}V2; 

r 2 = {(x + 1) 2 + y2 + (z -- q))2},/2 

r4 = {(x-- q02 + (y - -  1) 2 + z2} '/2 

r6 = {X 2 + (y + (i))2 + (z - 1)2} 'A 

r 8 = {x 2 + (y - qo) 2 + (z + 1)2} '/2 

rl ° = {x 2 + (y + ~)2 + (z + 1)2} '/2 

r12 = {(x + 1) 2 + y2 + (z + (p)2}'A 

(2) 
These twelve expressions can be grouped into three series, according to 
their functional form. In this way, series A contains (rb r> r9, rl2), series B 
(r3, r6, rs, rio ) and series C (r4, rs, r7, rll). The identification of these three 
series permits us to express (1) in cartesian coordinates with far greater 
case, because it is only necessary to carry out the explicit expansion for one 
of the twelve terms in order to obtain expansions for the other eleven terms 
of (2). Thus, l/r2 will be: 

- + l + R 2  (3) 
r 2 R 

where R = (1 + q)a)'/2, as can be seen in Fig. 2 (a) and bearing in mind that 
r2= x2+ y2+ z 2. Expanding the brackets, which is the power of a 
polynomial, leads to the result: 

1 1 ~ ~ ~ ( P n ) ( n ) ( m )  p - n / 2 x ' n - - m /  2q~z) m-s/ ' r2~ s 

r2 R n = 0 m = 0 s = 0  

I{I 
R 

+ (_ ( s(r2 s  

(4) 
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If  we add the terms (l/r1, l/r2, l/r9, 1/r12) for the four members of series 
A, those terms that contain odd powers in cartesian coordinates will 
disappear since they are equal and opposite, and the remaining terms will 
be repeated as often as there are members in the series. The expansions for 
series B and C are just the same as that for A, except that in series B z is 
substituted for x and y for z, and in series C x is substituted for y and y for 
Z. 

Once the expansion of the 1/r 1 expression has been carried out, as 
described above, and the twelve terms reunited and bearing in mind that 

h the subsequent expression for the 

icosahedral potential can be written: 

12 33 y6 z 6 V(r) R 2 0 R  7 {X6 q- q- q- 3 (1 + 7q~--l)(x2y 4 + y2z4 q- z2x 4) 

+ 3(1 - 7q~) (x4y 2 + y4z2 + z4z 2) + 90xZy2z 2} + . . .  (5) 

The first term of (5) is a simple geometrical constant invariant to K h 
and therefore to more symmetry operations than those contained in the I h 
group. The second term of (5), however, is only invariant to I h and, 
therefore, implies the anisotropy of the icosahedral symmetry in the 
expression of the potential. To use this potential as an anharmonic 
correction for the degenerate vibrations of molecules with I h symmetry we 
can omit the constant term of (5) and also the constant coefficient that 
multiplies the brackets of the second term and those which multiply the 
higher terms; all these latter coefficients will be included in the 
corresponding constants of anharmonicity, so that, by taking into account 
only those terms up to and including the sixth power, the expression (5) 
can now written: 

V(x, y, z) oc {x 6 q- y6 + Z 6 q_ 3(1 + 7q0--1) (x2y 4 + y2z4 q- Z2X 4) 

+ 3(1 -- 7q)) (x4y 2 + y4z2 + Z4X 2) q- 90xZy2z 2} (6) 

By changing the variables into spherical coordinates and expressing 
the results as a linear combination of spherical harmonics, the expression 
(6) will be: 

V (r, 0, q~) oc r 6 Y~6 - (7)~/2 Y~4 - Y~2 + Y60 (7) 

in which we have made use of the normalized spherical harmonics in real 
form, Y~m and Y~m, defined by Bradley and Cracknell [12]. 
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We have confirmed the expression thus obtained for the icosahedral 
potential since we were able to identify its sixth power term with one of the 
basis functions of the trivial representation of Ih, which we obtained as 
described later on this paper. 

Zero O1;der Eigenfunctions and Selected Perturbations 

The eigenfunctions for the stationary states of the isotropic harmonic 
oscillator in " d '  dimensions have the general form given by Louck [13]: 

tIJv,ld_p" ,11 (r, 0 d_ 1 , ' ' ,  01) = Rv,la_t (r) Yld p" .,11 (0 d_ 1 , " ,  01) (8) 

with a purely radial part, R v ld 1 (r), and another part which depends only 
on the generalized spheric'al-harmonics on a hypersphere of d -  1 
dimensions, Y]d 1 .- l, (0d- 1,. -, 01), known also as spherical 
hyperharmonics. Sucl~ eigenfunctions, the explicit form of which is given 
by Louck [13], must be invariant to the transformation of the SU (d) group 
[141. 

The parameter "d"  can have a maximum value of five, since that is the 
highest possible degeneracy of the molecular vibrations [1]. Thus, for 
threefold, fourfold and fivefold degenerate vibrations of molecules with I h 
symmetry d equals 3, 4, and 5, respectively. 

When d = 3 the eigenfunctions (8) are those of the isotropic 
aharmonic oscillator in three dimensions, invariant to SU (3), and are 
more widely known as functions of the surface spherical harmonics [15]: 

~I~vlm (r, 0, q~) = Rvl (r) Ylm (0, q~) (9) 

where the significance of the vibrational quantum number, v, and of the 
radial variable, r, remains the same, while 12 = 1 and 11 = m are now the 
quantum numbers of the total angular momentum and of the component 
of this in a arbitrary direction, respectively, and 0 2 = 0 and 01 = q}, are 
now the angular variables of the functions. 

In K h the eigenfunctions have to be bases of its irreducible 
representations and the use of the eigenfunctions (9) is restricted to the 
case of the Dlu vibrations of the sphere, whereas in its subgroups 
symmetry-adapted linear combinations of them can be used for Tlu 
vibrations [4]. Therefore, our approach for Tlu vibrations of I h molecules 
has been to start from the eigenfunctions of the unperturbated levels of the 
isotropic harmonic oscillator in three dimensions, as a zero-order 
approach. The angular parts of these eigenfunctions have been replaced 
by symmetry-adapted linear combinations of these parts. To do this, we 
have used the operator defined by the expression 

Ilk pk = g Z Dk ( )ij TR (10) 



SLate 

]0,0> Ag 

11,1> T1u 

12,0> Ag 

12,2> Hg 

[3~i> Tlu 

13,3> T2u 

13,3> G u 

14,0> A g 

]4 ,2>  H g 

i 4 , 4 >  G g 

[4 ,4  > M g 

[5,  1> T lu  

15,3 > T2u 

15,3 > G u 

[ 5 , 5  > T lu  

[ 5 , 5  > T2U 

T h e  I c o s a h e d r a l  P o t e n t i a l  

T a b l e  1. Zero-order eigenfunctions for T~ vibrations of I~ molecules 
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E i g e n f u n c t l o n  

V00 = R00Y00 

(x)  c (Y) R s ( z )  
VI1 = R l l Y l l  ; ~ I I  = l l Y l l  ; Vl l  = Rl lY10 

V20 = R20Y00 

~22 ~ R22Y22 ; ~22 = R22Y22 ; ~ R22Y21; V22 = Rg2Y21 ; V22 = R22Y20 

(x)  e {y) s v ( z ) =  
~31 = R31Yll  ; ~31 = R31Yll  ; 31 R31Y10 

( i )  R33({)  ½ -2 c ½ c , ( j )  R33( {}={1 -2 s + , - 1 (  ½ s v33 = {~ Y33 + ¢(3) Y31 } ; ~33 = - e Y33 3) Y31 } 

{k} R33(1){  (3)½Y32 + y30} ¥33 = 

(p)  s (q)  R33( )½{ c - ¢ (3)  Y31 } ~33 = R33Y32 ; ~33 = Y33 

3 ½ - t  a _ z -½ s - -½ c 

~40 = R40Y00 

)= R42Y22 ; ~'42 R42Y22 ; V42 R42Y21; *42 = R42Y21 ; ~ R42Y20 

A -* c 1 2 '{P) ~44@={4)%4 ~4o'; , (n )  @~{{2+o-~--~  ~* "44 = 44 = R44 4t } + ( / )  ¥43 -~ 

~ ' I ; )=  R 4 4 ( 7 ) ½ { - ( 2 + { 2 ) ( 7 ) - ½ Y ~ 3  +{ -1y~1}  ; v14)=  R 4 4 ( 1 ) ½ { ( S ) ½ Y 4 4  + (7)½Y;2 } 

t . ( b )  - c  
( a )  R44(~2)~  {_ (7)  ~g44 (5 ){! (40} ;  ~44 = R441(42 V44 = + 

! a s , (d)  I X _ -1 
~IX )= R44 (~4)~  {-~ (7)~Y23 ( 3 - ¢ - 1 ) Y 4 1 }  ; ~44 = - R 4 4 ( ~ ) 2 { ~  1(7)eY~3 + (3-~)Yz~ 1 } 

~44 = 44 ~2" " 5" ~44 - Y42 } 

(x )  c , ( y )  s v ( z ) =  
~5I = R s I Y l I  ; 351 = RSI Yl l  ; 51 Rs1Y10 

~ ) =  I ½ - 2  c ½ c , ( j )  1 ½ 2 s - 1  ! s 
R53(~)  {* Y33 T53 = R53(~)  {-¢ Y33 + ¢ ( 3 )  Y31} ; + ~ (3)2¥31 } 

v ( k )  R s a ( ½ ) { ( 3 ) ½ y ~  ° + Y3o } 53 = 

53 - Rs3Y32 ; 53 = Y33 

(~) V{2) - I  { (~*-t} o ~-1 ~ ( 2 2 ! 2 ~  } 
~55 = R55 6(14)½ Y55 - ~ Y 5 3  - 14(3)~ 51 

v ( y ) _  21 -½ ( 2 - 3 ~ )  s + ~ ~ s + -----r(4-¢) yS , 
55 - R 5 5 T ( Z )  6(a4)½ Y55 4 ( t 4 ) ~  Y53 14(3)~ 5I 

21 - -  -1 5 ~ c _ ( 2 l ) -  ½ c + 1~4Y50 ) )= R 5 5 T ( 2 )  ={ ~(7)  Y54 Y52 
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Table I (continued) 

State Eigen func t ion  

15,5 > Hit 

16,0> A g 

i6,2> H g 

{6,4> G g 

'(3) R5~(32-~)½{ 15(5-40 7 ½ s + ! + (4o_1)(735)½Y~i} )(2) Y55 (25-12¢)(~)~Y~3 "55 = 

(k) 315 { -1 -½yC - (21)-½Y~2 1 y 
~55 = R55 (26) { 2 (35) 54 + ~ 5O ) 

s ~ y  } 
~55 = RSSY52 ; ~55 = RssY54 ; 55 (14)2 33 (70)~ ~o (15) ~ 51 

~(d) 1 105 { { ~ Y ~ 5  + (15-40) s (11-40) y~l }  
55 = R 5 5 ~  ~ (14)~ . (70)4 Y53 + (15)½ 

~6o = R60Y00 

s c ?(d)_ s V~)=  R62Y20 c (b) ~ ) =  R62Y21; 62 - R62Y21 ; ' ~ ) =  R62Y22; V62 = R62Y22; 

~(p) i z (q) R64(~4)~{(2+¢-2) (7) -{y~3 ° y~l} 64 = R64(~Z22)2{({)zY~4+ Y40 } ;  ~64 = 

' ~ ) =  R64(Z~)½{-(2+°2)(7)-½Y~3 + ' - 1 Y ~ 1 } ;  '64(s)= R64(l~)½((S)½y~ 4 * (7)½y~21 

16,4 > H g 

[6,6 > A g 

16,6> Ttg 

16,6> H g 

16,6> G g 

& ! ! ¥(b) -c 
~(a) R64(~2)2{_(7)2y~ 4 ; 64 = * (5)2Y40) R64Y42 ~64 = 

_ , ( d )  1 { - 1  { ¢ + ( 3 _ ® ) y ~ 1  } .(~/_ ~64/~)~{_o(7){y% (3-°-1)Y~ ~ ~64 = % 4 / ~  ~ ~° (7) ~43 T64 - 

, ~ ) =  5 ½ ~ ½ s  s 
R64(T2) {(5 ) Y44 - Y42 } 

± 105~{yc _ (7){y~ 4 21 {yC ' 66  = R66(lIV 2 { ~ - "  66 - (~-)  62 + Y60 } 

, ~ ) =  R66~(~)½,(4¢-3)~st__~_~_. ÷ ~y(4{+3) s" + y~l} 
(66)~ 65 (10)~ 63 

*(Y) R 1 t33x½,(7¢+3)y-C (0~3)~c ¢2Y~1} 
66 = 6 6 ~ T '  ' (66--~)  65 + (10)~163 + 

66~r¢ 2 (22) ~ 66 ~-Y64 (30)~ 62 

~ ) =  R66(~)1 {(2){y~ 4 + (14)½Y60};  ,(b)66 = R66(¼){(t1)½Y~6 + (5)½Y~2 ~ 

~ ) =  R6611 (26_6°)-½{ (40_1)(~2){y~5 + (19_120 ( ~ )  ½ SY63 - Y61 t s  

~(d) ! ! + ! _ 

~ ) =  R661~(26-6O) ~{(2-3¢)(22)2Y66 + + 4 ( * -8 ) (3 )  Y64 5(3°- )(10) Y621 

V (p) R (21)4 110 ½ -c - 2(7)½Y~4 2 ½ ¢ 66 - 6 6 T  { (-2T) Y66 + l I ( 2 T )  Y62 + 2Y601 
t 

~(q)_ (4 t_ lS¢) -2{(9_4° ) (~)~Y651  s (23-36°)yS s + -- + 29Y61} 66 - R66 8 (10)4 63 

~ ) =  R66 (41-15°)-{{(e-5)(~){Y~58 + (37-3?¢tYC(10)~ 63 + (41-150)Y~1) 
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Table 1 (continued) 

S t a t e  E igen func t [on  

[ 7 , 1 >  Tlu 

[7,3> G u 

}7,3 > TZu 

}7,5 > TIu 

]7,5 > T2u 

17,5> H u 

]7,7> Tlu 

17,7> T2U 

17,7> G u 

-½ 
, ~ ) =  R66 (41-150)16 { (14-3¢)(22)½`5~6 + (5#=4)(48)½Y~, + ( 1 4 - 3 0 ) ( ~ ) ' Y ~ 2  } 

~f(x) c , (y)  s ~ 1 ) =  R7lYlo 71 = R71Y11~ "71 = R71`511; 

-½ c ,,(p) s v(q)  3 ½ c _ ¢-2(3 ) ; 
"73 = R73Y32; 73 = R73(~) {°`533 Y31 } 

(~) 3 ½ -x  ~ -~ (~) %3(¼)~ ~_(3)-~̀ 5~2 ) (~) {-¢ Y33 ¢2(3) ~Y~I } ; v73 = + 1"30 ~73 = R73 

' i i - 2  c ½ c , ( . j )  1 ~ 2 s + # - 1 ( 3 ) ~ ` 5 ~ 1  t 
@~)= R73 (~)={# `533 + #(3) `531 } ; "73 = R73 (~-) {-~ `533 

(k) R73(1){(3)½¥32 + Y30} ~73 = 

•(Y) 75 = 

4f- 
~(k) 
75 = 

4?- 

4?- 

~(q) 
77 = 

G)° 

4?: 

_! - c ~ r y C  ( # + 3 )  yC } 
R7  (2> 53- . (3 .  51 

R 7 5 ~ ( 2 ) - ~  (2 -3 ) )  s # s { --r--Y + ~ Y  (4-#)i Ys I } 
6(14)~ 55 4(14)2 53 + 14(3)= 5 

RTs~/21--~-w'3-~l  ,5~`55,) ~ - (2~)-½'-~2 + ~Yso ~ 

R75(32~6~)½{ 15(1+4#)(7)½Y~5-  (37-12#) (~)½Y~3 + (3~4#)(735)½Y~I) 

1 i 1 + ! s * i R75(3~)2{15(5-4#)(7)~̀ 5~5 (25-12~) (~)2Y53 (4#-I) (735)~Y~I } 

R75(31~) '{Z~(35)-~Y~4 (21)- '`5~2 -1 ~ Y50 } 

2 
s _ * ~Ysl } R75Y52; ~75 = R75Y54; 7 5 ~ ' ~ - - '  { (t4)½ 55 (70)2 ~o (15)s  

R 1 (105i½ (9+4#) s (15-4°)  s (11-4-#) s 
75~'-~-" { (14){ Y55 + (70)½ Y53 + (15)~ YSI } 

R75~,---i--. + 2(21) 252 + YS0 } 

1 ½ c c 
R77 ~ 2 ( ~ ) ½ {  (136511) ½Y77c - (21+2~)(~)~Y75 + (5 -6~) (3)  `573 + (1+6~)Y71~ 

1 1 i s _ 
R77 3 ~ ( ~  )~{ ~111365 ½ s¥77 + ( 2 ' - 2 3 ) ( ~ 1 ) i Y 7 5  + ( 1 - 6 ' ) ( 3 ) 2 ¥ 7 3  (6¢-7)Y~ 1} 

R77~4(~5)½ { 1001 ½yC 1I ½ c -½ c + 7(8¢_11)Y~1} 5 ( T )  77 + 7(~-)  (4#-9)Y75 + 7(3) (3+28#)Y73 

R77~4( i {5( - s - 7(3+8#)Y7t } z ~ -~ 7( )½(5+4¢)Y~5 + 7(3)-½(28#-31)Y73 

R77 h @  ½, 7 ~ ) G ; -  -@½%+ 7@½G+ 5~(-½`57o, 

R 7 7 - -  ( i1 )  ~`5~ 6 l 

1 (13)½ (1155~½v-c _ 11 ½ e + c 
R 7 7 ~  "~- { ' -TT-" -77 (5+2#)(-~-) Y75 ~ ( 3 ) ~  "573 + (9-10~)Y~1} 

~77~@½ ,(_~,1155-½ ~77 -(7-~#>@%~- ~'-~r(3. 7~ + (I°°-1";1' 

R77 i ~ ( ~ ) ½  ¢55,½`5c - ½ c 5 ½ c ' {5t7-'~' 76 (38) Y74 + 7(~) Y72 ÷ (7)~`570) 
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Tab le  I (continued) 

SBabe 

17,7> H u 

EigenfuncBion 
a 

s . (b)_ R77 ( ~ 2 {  ½ -s  + ll)~,L~2 } V~ )= R77Y74; ~77 - (13) Y76 ( 

c V77(c)_ R77~44 (~)½{ 195(429 ) 7  ½Y77C + (67-z14¢)YC(33)~ 75 + __(29-28¢)(3)2_1 Y73c _ (21+8¢),L71} 

~(d) 1 11 { 1 7 ½ -s  (23+44¢) yS (1+28¢) s _ (29_8¢)y~1 } 
77 = R77~-4(~-) { 9 5 ( ~ )  Y77 + (33)½ 75 - (3)½ Y73 

, ~ ) ~  R77BT1 (ll)½T l ( ! ~ ) ½ £ ~ 6  + TT(33)50 ½0774 - {~}½Y72 + 10(7)½Y70} 

where D k (R)i j are the elements of the matrices of the representation F k. In 
order to make use of this expression the explicit matrix representation of 
the I h group [16] must be available beforehand. The eigenfunctions 
obtained in this way are shown in Table 1. They have been tabulated as far 
as v = 7 as they come in use later in the calculation of the perturbated 
eigenfunctions and the intensities of the active transitions in infrared for 
such Tlu vibrations. The states have been denoted as Iv, 1 > F, where "v"  
and 'T '  have the same significance as above, and F represent the species of 
symmetry of the state associated with "v" and 'T ' .  

We have identified the eigenfunctions up to v = 4 with those 
irreducible icosahedral tensors of fourth rank that are not zero when their 
expressions are transformed to spherical coordinates [9]. 

For G u and Hg vibrations we could have followed a process similar to 
the one described for Tlu, with the aim of obtaining eigenfunctions that 
could be used as a zero order approach in the calculus of the 
perturbations. In other words, we could have taken as radial parts of the 
eigenfunctions those of the fourfold and fivefold isotropic harmonic 
oscillator, and as angular parts symmetrized linear combinations of the 
spherical hyperharmonics in three and four dimensions. Nevertheless, 
assuming that the icosahedral potential (7), which will act as a 
perturbation on all the vibrations of icosahedral molecules, is defined in 
only one eucledian three-dimensional space, we decided to use the radial 
parts of the eigenfunctions of fourfold and fivefold isotropic harmonic 
oscillator as the radial parts of the eigenfunctions for the Gu and Hg 
vibrations, since these are the only known radial parts and symmetrized 
linear combination of surface spherical harmonics as angular parts. Such 
linear combinations imply the molecular anisotropy in the eigenfunctions. 
This process has been used before in the study of degenerate vibrations of 
molecules belonging to other point symmetry groups [3-5] and can be 
justified on the basis of Wigner and Eckart's theorem [17-18], which states 
that the matrix elements obtained with such eigenfunctions must be 
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proportional to the ones obtained starting from the true eigenfunctions. It 
is thus possible to include the different proportionality contants in the 
corresponding anharmonicity constants. 

According to the group theory [1], the succesive overtone levels of any 
particular vibration must split into as many states as there are irreducible 
representations resulting from the reduction of the V th symmetrical power 
of the irreducible representation of the first excitated state. We obtained 
the angular parts of the zero order eigenfunctions for the Gu and Hg 
vibrations of I h molecules by methodically constructing the bases for the 
irreducible representations which result from the reduction of [G~] and 
[Hg], respectively. These bases have been symmetrized using the operator 
defined by (10), starting from the basis {Y~2, (3/8) ~/2 [q~ Y~3 - q~--; (3) - ~  
yo 1 t3/8~v2 ~p--1 2,3,--v_~ ys 1 (3) ,/2 31J, i / ] [ - -  Y~3 - (P t ) - 31~, (3/4) ~ [ -  Y~2 + Y30]} of 
G,  and {Y20, Y~'I s, 122vc's~ of Hg. 

The zero order eigenfunctions completed for the G u and Hg vibrations 
appear in Tables 2 and 3, respectively. For Hg the notation Iv, 1 > F has 
been retained and although the parameter 'T '  does not have the same 
significance as in T~u, it nevertheless allow us to unambiguously relate 
each state of such Hg vibrations to that of the D2g vibrations of the sphere, 
from which they come through descent in symmetry. It also allows us to 
identify perfectly the eigenfunctions that must be associated with them. In 
this case of the G u vibrations only the notation !v > F has been used since 
their parentage with the D3u vibrations of the sphere is of fractional type 
and, consequently, different mixed values of "1" will appear in the same 
eigenfunction. 

The anharmonicity that will act as a perturbation of the harmonic 
model for all the vibrations of I h molecules will be as follows: 

A H = J ~ r 4 - ~ r r 6 q - ~ / r  J~Z)  Y~6-(7)  - ya2+Y60 

(l l)  

where the third term of equation (11) is the sixth order icosahedral 
potential, obtained in the above section and the first and second terms 
have been included because, if they are invariant to K h, they will also be 
invariant to its I h subgroup. 

Results and Discussion 

According to Tisza [1], the succesive overtone levels of the T1u, Gu and 
Hg vibrations of Ih molecules must split as follows: 

68 )lonatshefte ffir Chemie, Vol. 117/8--9 
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V 

0 

1 

2 

3 

SBate 

10> A g 

I1> G u 

[2> A g 

12> G g 

12> Hg 

Tlu  G u Hg 

Ag Ag Ag 

T l u  G. Hg 
[T21u] = Ag 4- N g  [G 2] = Ag + Gg + Hg [Hg ~] = Ag + Gg + 2 Hg 

3 - [H~]= 2 A g + T ~ g +  Tzg [Tlu ] - T ~  + T2~ + G u [G 3] + Au + Tlu + Ta~ 
+ 2 G u + H  u + 3G~+  3H,~ 

Table 2. Zero-order eigenfunctions for G~ vibrations of I h molecules 

Eigenfunctions 

~00 = R00Yo0 

i c 1 
~11" (P) = R11Y82 i s  ~3.1'(q) = R11 (~) ~ {°Y33 - ° -2 (3 ) -2Y~1)  ; 

( r )  3 ½ -1 s -½ s (s)  R1 (g) {-° Y33 - °2(3)  Y31 } ; v i i  = 1 (3)½{ -(3)-½Y32C } ~11 = Rl l  + Y30 

~20 R20 ~4(3003)  ½{ 10 ½yC iO i -½yc _ 2 ½ c 10 -½ 32y = 5(3--F~) 66 ~ ~ ( 9  ) 64 5(2--~) Y62 + ~-~(13) X60 + ~ 00 } 

5 , ½ ~ - c  1 ½ c (42)-½Y~2 +~lY60 ] ~ [  5 ½ c ~22"(P)-- R22(4~9)½{-~ " (13 ) - { [  '4~'~ "66 TY (7) Y64 + + (7) Y44 ~ Y4o ]} 

3 ½ s (23-36¢) ,  ~,_i s 29vs 
v(q)22 = R22(4--~-~9)½{-~(11193-4095 )-½[(9-4#)(%v#) Y65+ 22 k3.u) =Y63 + ~ - 6 1  ] + 

(2 )½~4-¢)  - *  - 
+ 33 "~ (7) =¥43 eye, 3.]} 

R22(-T- )  [ ~( 93-40950)  [ 65 + - - 2 2  63 + - 22 Y6i ] + 
l 

+~(2) ~ -½ -c  -1 c 
33 L(3+¢)(7)  Y43 +¢ Y41] )  

V~2) = ~  R z 2 . ~ , f  429.½,. -{.( t i 193_4095¢ ) - {  [ ( t 4- 3¢) (88) ½Y~6 + (5~14) (3) ½Y64 + ~ ( 1 4 _ 3 ¢ )  ( ~ ) s  7 2 ½Y62]s + 

3 ½{-5 2 ½ 2"~-"  66 + 3 764 + 2 ̀ 0, 62 3 - ~/~2)= R221~435 ) ~ ( ~ )  [ 1,SS,~½yc (2) -½ c _~t~,-½yC + 1(7)½Y60 ] + 

t 5)½ -c c + 1~4Y401 8_1(5)-½,120 } + T3 [ 2 7 "  Y44 - Y42 

~(b) t ½ - 1 0 2  ½ 1 1 1 ½  e 1 (5~{ .c  _t(5)½y~ 2 i , 3 5 x { y  
1--5 (3.365) { T i - ( ~  -) [ ~ ( 7  ) Y66 + 22 = R22 + -2"2" ~64 4 3  + ~ t~-J  60 + 

+ ~ [~ (7 )1  1 ½Yc44 - #(5)=Z421 ~ c - ~ ' (5)½Y40]-  --8(15)-½Y22}7 

4 -½ s 2 ! ~ ½ r  ~Z~½v ~ s ] -  y(s) Y22} 
- 77 3" "5" -44 - Y42 

-½2  3 ½ c + ~2(~)½(~+90)Y~3 + ~2(13_3¢)y~3.]  - ~,(d) R22{(455)½ {5(13.83-273°)  [~(S°-7)(-ff~) Y65 22 = 

(6)-½[ ° (7) Y43 + (°+3)Y41] - (5)-~Y~3. } 

-½ 3. 3 ½s  ~ l s 
• (e) R22{ (455)~  {5(3.3.83-273°) [ ' ~ ( 4 0 + 1 ) ( ~ )  765 + 2-112-(~)=(19-3.2°)Y~3 - 2Y61] + v22 = 

+ ~7(6) -½[  o(7)½y~. 3 + {4-O)Y~l ]  - #(S)4 -½Y21S ] 
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Table 3. Zero-order eigenfunctions for Hg vibrations of I h molecules 

State 

]0,0> Ag ~00 = 

11,2> Hg ~ ) =  

[2,0> Ag v20 = 

12,2> % ~ /  
12,4> % ~/= 

[2,4> Hg ' ~ ) :  

997 

Ei~onfunction 

RooYo0 
e ~ ( b ) =  s ( e )  c ~ ( d ) =  ~ , ( e )  

R11Y22 ; II RIIY22; ~11 = RIIY21; 11 RIIY21; YII - RIIY20 

R20Y00 

¢ ,-(b) ~ ) =  R22Y21; ~22 = R22Y21; R22Y22; T22 = R22Y22 ; 

1 ½ ½ ~ ( 5 ) ½ Y 4 o  ( b ) '  c R22(Y~) { - ( 7 )  Y44 + } ; ~ ' 2 2  R22Y42 ; 

R22(2~)½ a s ½ c + (3+¢)y~1 } { ( 7 ) ~  Y43 - (3- ¢~l~YS' 41 ~ ; "22'(d)'= R22(~4)½{Kl(7 ) Y43 

5 -44 - Y42 ) 

Such splitting have been confirmed by calculating the perturbations 
produced by the anharmonicity (11) in the different vibrational levels. 
Thus, it has been sufficient in all cases under consideration to calculate the 
first order correction alone. Higher order perturbations, apart from being 
of a lesser magnitude than the former ones, do not produce any further 
splitting out merely confine themselves to displacing the previously split 
levels. 

First order perturbation of the [3 r 4 and 7r6 terms achieves only a 
splitting of vibrational levels in the spherical symmetry, but their 
corrections will have to be born in mind since their magnitudes are 
important in the calculations. All the splitting inherent in the icosahedral 
symmetry is achieved when the corrections produced by the first order 

, 6 _ _ perturbations oftheterm7 r {(105/22) ~ Y~6 (7) ~ Y~4 (21/2) ½ Y~2 + 
Y60} are introduced into the energy values. 

The calculation of perturbated energies have only been made up to 
v = 3 for the Tlu vibrations, and up to v = 2 for the Gu and Hg vibrations 
because at and beyond these levels the splitting inherent to the icosahedral 
anisotropy is observable. 

In Table 4 the expression obtained for the perturbated energies of the 
stationary states of the Tlu vibrations of Ih molecules and, as a part of 
them, the ones corresponding to the Dlu vibrations of the sphere are 
shown. As can be observed on descending in symmetry from K h to Ih, the 
state r3,3 > D3u of the second overtone Of Kh is split into states 13,3 > T2~ 

6 8 *  
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Table 4. Energies for the perturbated levels' of Tlu vibrations of  I h molecules 

State 

K h I h Energy 

]0,0> D0g ,0,0> Ag 3 h v  tV ~ + 1~5 5' 

] l , l >  Dlu [1,1> Tlu ~ hv + ~ 8 + ~ "~ 

119 13,1> DIu 13,1> TIu --9 2 hv + T 8+ 18~ ¥ 

,3,3> 2o 60¢ 
[3,3 > D3u 

13,3> G u -92 h~ + ~9-- 8 + ~ ' (  + 45"" 

Table 5. Energies for the perturbated levels of  Hg vibrations of I h molecules 

State 

Kh T h Enepgy 

[0,0> DOg ,0 ,0  > Ag ~ h .  + V B + 3_~5 y 

[1,2> D2g [1,2> Hg + - -  
119 1827 

[2,0> DOg 12,0> Ag hv + ~-- B + ~ Y 
? 1287 

]2,2> D2g 12,2> Hg hv + - -  8 + ~ 

9 hv + ~ 8  + ~ Z y  + 45 Y" 12,4 > Gg g 

J2,4 > D4g 

, 2 , 4 > H g  ~ h ~ + ~ S + ~ , - 3 6 ,  '' 

and 13,3 > Gu with contributions of - 607" and 45 7" and relative weights 
of 3 and 4, respectively. Thus it can be seen how the "centre of gravity" or 
"centre of energies" is maintained. 

In Table 5 the perturbated energies corresponding to the Hg vibrations 
of I h molecules and the D=g of the sphere are shown. On descending in 
symmetry from K h to Ih, the state 12,4 > D4g of the first overtone o f K  h is 
split into the states j2,4 > Gg and j2,4 > Hg with contributions of 45 7" 
and - 36 7" and relative weights of 4 and 5, respectively, maintaining once 
again the "centre of gravity". 

In Table 6 the perturbated energies for the G u vibrations of I h 
molecules are shown. In this case the "centre of gravity" is not maintained 
since, as we said before, the parentage of these vibrations with progenitors 
D3u o f K  h is of a fractional type. In fact, each state o f I  h in a particular level 
[v > F comes from the partial contributions of the different states of such 
levels in K h. 

We have also calculated the perturbated eigenfunctions of the Tlu 
vibrations of Ih, bearing in mind the first order corrections introduced by 
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Table 6. Energies for the perturbated levels of G, vibrations of I h molecules 

State E n e r g y  

[0?AN 2 hv + 6 fl + 24 

II>G 3 h~ + 12 8 + 60 ¥+ 2400 
i o ~ f "  Y'' 

2184o ]2>Ag 4 hv + 24 ~ + 168 V+ ~ V" 

19200 12>Gg 4 hv + 20 fl + 120 y+ 3~ Y" 

146400 12>Hg 4 hv ÷ 20 fl + 120 y+ ~ T" 

Table 7. Perturbated eigenfunctions for Tlu vibrations of I h mo~cules 

State Bigenfunction 

IO,O>Ag v00 = v00+ ¼(6)½b v20- ~(30)~b v40 

[ i , l> r lu  V ~ ; , y , z )  VlI(x'Y'Z) + ~ (lO)½b v(x'Y'Z)-31 ~ (70)½b V(x'Y'Z)51 

r2,0>A V20 = V20- ¼ (6)~b %0 ÷ ~(5)% ~40- g(210)% %0 

12,2>Hg (a,b,c ,d~e) (a ,b ,c ,d ,e )+  ~(14)½b (a,b~c,d,e)  
V22 = Y22 V42 - 

- ~ (14)½b v(a'b'c'd'e)62 

13,1>Tlu ~(x,y,z~31 v31'(x'Y'Z) _ ¼(lO)g bt Vll(X'Y'Z) + ~ (7)½b v(x'Y'Z)-sl 

_ ~(42)½ b @~,y,z) 

i 3, 3>T2u V33(i'~'k) = Vj3(i'~'k)+ ~ (2,½b ~3(i ' j 'k)-  ~(22,½ b V ~ , j , k )  

( p , q , r , s )  ( p , q , r , s )  ~(22)½ b (p ,q , r , s )  
r3 '3>Ou v33 = ~33 - v73 

b=~ 

the term 13 r 4 of(11), which are of great magnitude. Thus we have obtained 
perturbated eigenfunctions up to v -- 3. The results obtained appear in 
Table 7. 

Finally, we calculated expressions for the intensity of the vibrational 
T1u transitions of I h molecules active in the infrared, using the perturbated 
eigenfunctions calculated above. 

We made these intensity calculations using Einstein's coefficients 
defined as: 

Nit3 gm <tFml~qtpn)2 (12) 
Bnm - 3 h 2 gn 

where gm and gn are the degeneracies of  the upper and lower levels of the 
corresponding transitions and ti is the dipolar moment operator. To 
evaluate the matrix elements <tIam I tilTn> 2, or transition moment, we broke 
the dipole moment operator, 0, into its three components {gx, gy, gz}" We 
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expanded each of them in power series, bearing in mind that each term of 
that expansion has to be a basis of the same representation to which the set 
of coordinates {x, y, z} is associated. The expression of these components 
of the dipole moment in a linear combination of spherical harmonics is 
given by: 

, + v21(2) rS[(3q~- 1)yo q0--1(14)V2y~ 3 (q)- 3)(3)'/2yc "~+ 
g x = g ~ - J  rYe1 g ~  ~ 5s 28 42 51~ .. 

, / 4 ~ \  ~ ,  | 21tz) . . . .  '/2 r- 2 _ 3 -  _q~tt"4 "~) - v 5~t ~ P ) . . ~ - . s  (4-q))(3)~ys k +  ) 

gy = # ~ k T  J rY], ± g - -  4 - - r l ~ x 5 5  ± 28 ~53-t - ~  1 51S "'" 

4~)  5(35) -v~ 
g ~ : g '  3 -  rYlo+g~ ( r s c --w 6 Y54-(21) Ys2-  Y5o +..- 

(13) 

From these expressions we have only retained the contributions given 
by the first terms, since those given by the second ones are four orders of 
magnitude less than these of the first ones. 

In this way we have calculated Einstein's absorption coefficients, B~m, 
for the fundamental and the second overtone transitions, obtaining the 
results shown in Table 8. 

Table 8. Einstein ~ coefficients of Tlu vibrations of I h molecules 

TeansiLion Bnm(m3s im°lec-l)'lO-6 

4 ~  3 ~,2 II,I>TIu-IO,O>Ag h2 (1- { b) 2 

1573 b 2 ~,2 
13'l>Tlu-10'0>Ag 2h 2 

b=h~ ~ 

All the radial matrix elements neccesary to our calculations have been 
evaluated according to Shaffer [15] and Shaffer et al. [19]; nevertheless, we 
had to evaluate the angular matrix elements ourselves. 

Conclusion 

In conclusion we feel able to say that we have obtained all the splitting 
predicted by the group theory for the overtone levels of the Tlu, Gu and Hg 
vibrations of molecules with I h symmetry; in the first case up to v = 3 and 
in the rest up to v = 2. To achieve this we had to establish the sixth power 
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icosahedral potential beforehand, employing the usual procedure in 
crystal field theory. We also had to elaborate zero order eigenfunctions 
consisting of a radial part, which will be that of the isotropic harmonic 
oscillator in three-, four- and five-dimensions, depending on whether they 
are Tlu, G u and Hg vibrations, and symmetry-adapted angular parts. 
Furthermore, we have obtained expressions for Einstein's coefficients, 
Bnm, of the active transitions in infrared for T~u vibrations of molecules 
with I h symmetry. 
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